
UCLA: Math 32B Week 5 Worksheet Spring 20

1. (a) Find a change of coordinates G : R3 ! R3 so that if S2 is the unit sphere then G(S2) is the ellipsoid
(x/a)2 + (y/b)2 + (z/c)2 = 1.

(b) Compute the volume of the ellipsoid (x/a)2 + (y/b)2 + (z/c)2 = 1.

2. If W0
G1��! W1

G2��! W2 are two change of coordinates, what should the relationship be between J(G2�G1)
and J(G1) and J(G2)? Think geometrically in terms of what the Jacobian is measuring.

Show that the relationship you posit is true when either W0 or W1 is a linear change of coordinates of
the form G(u, v, w) = (au, bv, cw). I suggest you do enough of the calculation to see what is happening,
but to not necessarily compute the whole thing.

What does this tell you about the first problem on the worksheet?

3. A spherical shell centered at the origin has an inner radius of 5 cm and an outer radius of 6 cm. The
density of the material increases linearly with the distance from the center.

At the inner surface the density is 12g/cm3 and at the outer surface the density is 14g/cm3.

(a) Write the density in spherical coordinates.

(b) Compute the mass of this spherical shell.

(c) Since the density function is spherically symmetric the center of mass of the spherical shell is
centered at the origin. Write down the integrals computing the center of mass and explain with
minimal computations why they give that the center of mass is the origin.

4. (a) Find the center of mass of a solid half hemisphere with constant density . Because of the radial
symmetry you know that the center of mass is located along the z-axis (if the hemipshere is sitting on
the xy plane with one pole along the z-axis). Like in the previous question, write down the integrals
computing the x and y coordinates of the center of mass and explain with minimal computations
why they give that the center of mass is on the z-axis.

(b) Compute the center of mass of the solid cone described by
p

x2 + y2  z  1 if the cone has
constant density.

(c) If a solid W has center of mass (xCM , yCM , zCM ) does the plane z = zCM always divide W in to
two regions with the same mass? If not, give a counterexample. What are some situations where
the plane does divide W in to two regions of equal mass?
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