WORKSHEET DISCUSSION SECTION 7 DUE 5/20 AT MIDNIGHT PDT

(1) Consider the function

$$f(x,y) = \sin\left(\frac{1}{x^2 + y^2}\right).$$

- (a) Describe the behavior of r^2 , $1/r^2$, and $\sin(1/r^2)$ as r approaches 0.
- (b) Describe the graph of f(x, y) near (0, 0).
- (c) Does f(x, y) have a limit at (0, 0)? Why or why not?
- (d) Now consider the function

$$g(x,y) = (x^2 + y^2) \cdot f(x,y)$$

Repeat parts (b) and (c) for g(x, y).

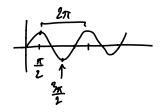
(e) Now consider the function

$$h(x,y) = \frac{x^2}{x^2 + y^2} \cdot f(x,y).$$

Repeat parts (b) and (c) for h(x, y).

- (2) Suppose f(x, y) is a function and let F(x) = f(x, b) for some fixed constant b. Use the limit definitions of derivatives and partial derivatives to express the partial derivative $f_x(a, b)$ in terms of F(x).
- (3) Let $f(x, y) = x^2 y^2$ and let \mathcal{G} be its graph.
 - (a) What kind of surface is \mathcal{G} ?
 - (b) Parametrize the intersection of \mathcal{G} with the plane y = 2.
 - (c) Take the derivative of the parametrization you found in (b) to find a tangent vector to \mathcal{G} at (1, 2, f(1, 2)).
 - (d) Repeat the previous two parts for the intersection of \mathcal{G} with the plane x = 1.
 - (e) Find a normal vector \vec{n} to \mathcal{G} at (1, 2, f(1, 2)).
 - (f) What is an equation for the tangent plane to \mathcal{G} at (1, 2, f(1, 2))?

1a.
$$r^{2}$$
: parabolic
 r^{-2} : vert. asymptote
 $\sin r^{-2}$: oscillation with frequency -3∞ near 0.
b. Same oscillation, but the function is radially symmetric.
c. No, for the same reason as in 1D.
d. Oscillates but decays to 0 as $r \to 0$
 $|(r^{2} + q^{2}) \sin \frac{1}{r^{2} + q^{2}}| = |r^{2} \sin \frac{1}{r}| \leq r^{2} - 70$
 $|(r^{2} + q^{2}) \sin \frac{1}{r^{2} + q^{2}}| = |r^{2} \sin \frac{1}{r}| \leq r^{2} - 70$
 $rotiofres $s_{1} \times 0$ but
 $rotiofres (rotion) = 0$.
 $rotiofres (rotion) = 0$.$



2.
$$F(r) = f(r, b)$$
. Then $f_{r}(a, b) = F'(a)$:
 $f_{r}(a, b) = \lim_{h \to 0} \frac{f(a + h, b) - f(a, b)}{h} = \lim_{h \to 0} \frac{F(a + h) - F(a)}{h} = F'(a)$.

3a. hyperbolic paraboloid
b.
$$f(x, 2) = x^{n} - 4$$
 so we can parameterize this by
 $\vec{r}(t) = (1, 2, t^{n} - 4)$ $(t \in \mathbb{R})$
c. $\vec{r}'(t) = (1, 0, 2t)$
 $\vec{r}'(1) = (1, 0, 2)$
d. $\vec{f}(t) = (1, t, 1 - t^{1})$
 $\vec{f}'(2) = (0, 1, -2t)$
 $\vec{f}'(2) = (0, 1, -4)$
e. $\vec{n} = \vec{r}^{2t}(2) \times \vec{f}'(1) = \begin{vmatrix} f & f & f \\ 1 & 0 & 2 \\ 0 & 1 - 4 \end{vmatrix} = (-2, +4, 1)$
f. $-2x + 4y + z = d$
 $-2 \cdot 1 + 4 \cdot 2 + (-3) = d \implies d = 3$.
Alternatively,
 $\vec{F} = x^{2} - y^{2} - z$
 $\nabla \vec{F} = (2x, -2y, -1)$
 $\vec{n} = \nabla \vec{F}(1, 2) = (2, -4, -1)$ (we'll see this method later on)